3.11.81 \(\int \frac {x^{13/2}}{(a+b x^2+c x^4)^3} \, dx\) [1081]

3.11.81.1 Optimal result
3.11.81.2 Mathematica [C] (verified)
3.11.81.3 Rubi [A] (verified)
3.11.81.4 Maple [C] (verified)
3.11.81.5 Fricas [B] (verification not implemented)
3.11.81.6 Sympy [F(-1)]
3.11.81.7 Maxima [F]
3.11.81.8 Giac [F]
3.11.81.9 Mupad [B] (verification not implemented)

3.11.81.1 Optimal result

Integrand size = 20, antiderivative size = 569 \[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {x^{7/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {x^{3/2} \left (24 a b+\left (5 b^2+28 a c\right ) x^2\right )}{16 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {\left (5 b^3+172 a b c+\sqrt {b^2-4 a c} \left (5 b^2+28 a c\right )\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{32\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{5/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\left (5 b^2+28 a c-\frac {5 b^3+172 a b c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{32\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^2 \sqrt [4]{-b+\sqrt {b^2-4 a c}}}-\frac {\left (5 b^3+172 a b c+\sqrt {b^2-4 a c} \left (5 b^2+28 a c\right )\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{32\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{5/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\left (5 b^2+28 a c-\frac {5 b^3+172 a b c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{32\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^2 \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

output
1/4*x^(7/2)*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^2+1/16*x^(3/2)*(24*a* 
b+(28*a*c+5*b^2)*x^2)/(-4*a*c+b^2)^2/(c*x^4+b*x^2+a)+1/64*arctan(2^(1/4)*c 
^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(5*b^2+28*a*c+(-172*a*b*c-5* 
b^3)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4)/(-4*a*c+b^2)^2/(-b+(-4*a*c+b^2)^( 
1/2))^(1/4)-1/64*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^( 
1/4))*(5*b^2+28*a*c+(-172*a*b*c-5*b^3)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4) 
/(-4*a*c+b^2)^2/(-b+(-4*a*c+b^2)^(1/2))^(1/4)+1/64*arctan(2^(1/4)*c^(1/4)* 
x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(5*b^3+172*a*b*c+(28*a*c+5*b^2)*(-4 
*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4)/(-4*a*c+b^2)^(5/2)/(-b-(-4*a*c+b^2)^(1/2) 
)^(1/4)-1/64*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4) 
)*(5*b^3+172*a*b*c+(28*a*c+5*b^2)*(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4)/(-4* 
a*c+b^2)^(5/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)
 
3.11.81.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.70 (sec) , antiderivative size = 392, normalized size of antiderivative = 0.69 \[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {1}{64} \left (\frac {4 x^{3/2} \left (4 a^2 \left (6 b-c x^2\right )+b^2 x^4 \left (9 b+5 c x^2\right )+a \left (37 b^2 x^2+36 b c x^4+28 c^2 x^6\right )\right )}{\left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )^2}+\frac {8 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b^3 \log \left (\sqrt {x}-\text {$\#$1}\right )-13 a b c \log \left (\sqrt {x}-\text {$\#$1}\right )+b^2 c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4+2 a c^2 \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{a c^2 \left (-b^2+4 a c\right )}+\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {8 b^5 \log \left (\sqrt {x}-\text {$\#$1}\right )-136 a b^3 c \log \left (\sqrt {x}-\text {$\#$1}\right )+344 a^2 b c^2 \log \left (\sqrt {x}-\text {$\#$1}\right )+8 b^4 c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4-11 a b^2 c^2 \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4-36 a^2 c^3 \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{a c^2 \left (b^2-4 a c\right )^2}\right ) \]

input
Integrate[x^(13/2)/(a + b*x^2 + c*x^4)^3,x]
 
output
((4*x^(3/2)*(4*a^2*(6*b - c*x^2) + b^2*x^4*(9*b + 5*c*x^2) + a*(37*b^2*x^2 
 + 36*b*c*x^4 + 28*c^2*x^6)))/((b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)^2) + (8 
*RootSum[a + b*#1^4 + c*#1^8 & , (b^3*Log[Sqrt[x] - #1] - 13*a*b*c*Log[Sqr 
t[x] - #1] + b^2*c*Log[Sqrt[x] - #1]*#1^4 + 2*a*c^2*Log[Sqrt[x] - #1]*#1^4 
)/(b*#1 + 2*c*#1^5) & ])/(a*c^2*(-b^2 + 4*a*c)) + RootSum[a + b*#1^4 + c*# 
1^8 & , (8*b^5*Log[Sqrt[x] - #1] - 136*a*b^3*c*Log[Sqrt[x] - #1] + 344*a^2 
*b*c^2*Log[Sqrt[x] - #1] + 8*b^4*c*Log[Sqrt[x] - #1]*#1^4 - 11*a*b^2*c^2*L 
og[Sqrt[x] - #1]*#1^4 - 36*a^2*c^3*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^ 
5) & ]/(a*c^2*(b^2 - 4*a*c)^2))/64
 
3.11.81.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 494, normalized size of antiderivative = 0.87, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {1435, 1701, 1822, 25, 1834, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^7}{\left (c x^4+b x^2+a\right )^3}d\sqrt {x}\)

\(\Big \downarrow \) 1701

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\int \frac {x^3 \left (14 a-5 b x^2\right )}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1822

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {-\frac {\int -\frac {x \left (72 a b-\left (5 b^2+28 a c\right ) x^2\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {\int \frac {x \left (72 a b-\left (5 b^2+28 a c\right ) x^2\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1834

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {-\frac {1}{2} \left (-\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \int \frac {2 x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}-\frac {1}{2} \left (\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \int \frac {2 x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {-\left (\left (-\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \int \frac {x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}\right )-\left (\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \int \frac {x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 827

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {-\left (\left (\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )\right )-\left (-\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {-\left (\left (\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )\right )-\left (-\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {x^{7/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {-\left (\left (\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )\right )-\left (-\frac {172 a b c+5 b^3}{\sqrt {b^2-4 a c}}+28 a c+5 b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4 \left (b^2-4 a c\right )}-\frac {x^{3/2} \left (x^2 \left (28 a c+5 b^2\right )+24 a b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{8 \left (b^2-4 a c\right )}\right )\)

input
Int[x^(13/2)/(a + b*x^2 + c*x^4)^3,x]
 
output
2*((x^(7/2)*(2*a + b*x^2))/(8*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (-1/4 
*(x^(3/2)*(24*a*b + (5*b^2 + 28*a*c)*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x 
^4)) + (-((5*b^2 + 28*a*c + (5*b^3 + 172*a*b*c)/Sqrt[b^2 - 4*a*c])*(ArcTan 
[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3 
/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(- 
b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 4*a*c])^ 
(1/4)))) - (5*b^2 + 28*a*c - (5*b^3 + 172*a*b*c)/Sqrt[b^2 - 4*a*c])*(ArcTa 
n[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^( 
3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/( 
-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c]) 
^(1/4))))/(4*(b^2 - 4*a*c)))/(8*(b^2 - 4*a*c)))
 

3.11.81.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1701
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[(-d^(2*n - 1))*(d*x)^(m - 2*n + 1)*(2*a + b*x^n)*((a + b*x 
^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^(2*n)/(n*(p 
 + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m - 2*n)*(2*a*(m - 2*n + 1) + b*(m + n*(2 
*p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c 
, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1 
] && GtQ[m, 2*n - 1]
 

rule 1822
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + ( 
c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Simp[f^(n - 1)*(f*x)^(m - n + 1)*(a + 
b*x^n + c*x^(2*n))^(p + 1)*((b*d - 2*a*e - (b*e - 2*c*d)*x^n)/(n*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[f^n/(n*(p + 1)*(b^2 - 4*a*c))   Int[(f*x)^(m - n)* 
(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[(n - m - 1)*(b*d - 2*a*e) + (2*n*p + 2 
*n + m + 1)*(b*e - 2*c*d)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] & 
& EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m, 
 n - 1] && IntegerQ[p]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
3.11.81.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 2.55 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.43

method result size
derivativedivides \(\frac {\frac {3 a^{2} b \,x^{\frac {3}{2}}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a \left (4 a c -37 b^{2}\right ) x^{\frac {7}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {9 b \left (4 a c +b^{2}\right ) x^{\frac {11}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {2 c \left (28 a c +5 b^{2}\right ) x^{\frac {15}{2}}}{512 a^{2} c^{2}-256 a \,b^{2} c +32 b^{4}}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\left (-28 a c -5 b^{2}\right ) \textit {\_R}^{6}+72 b \,\textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{64 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}\) \(242\)
default \(\frac {\frac {3 a^{2} b \,x^{\frac {3}{2}}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a \left (4 a c -37 b^{2}\right ) x^{\frac {7}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {9 b \left (4 a c +b^{2}\right ) x^{\frac {11}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {2 c \left (28 a c +5 b^{2}\right ) x^{\frac {15}{2}}}{512 a^{2} c^{2}-256 a \,b^{2} c +32 b^{4}}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\left (-28 a c -5 b^{2}\right ) \textit {\_R}^{6}+72 b \,\textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{64 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}\) \(242\)

input
int(x^(13/2)/(c*x^4+b*x^2+a)^3,x,method=_RETURNVERBOSE)
 
output
2*(3/4*a^2*b/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(3/2)-1/32*a*(4*a*c-37*b^2)/(16* 
a^2*c^2-8*a*b^2*c+b^4)*x^(7/2)+9/32*b*(4*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^ 
4)*x^(11/2)+1/32*c*(28*a*c+5*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(15/2))/(c* 
x^4+b*x^2+a)^2-1/64/(16*a^2*c^2-8*a*b^2*c+b^4)*sum(((-28*a*c-5*b^2)*_R^6+7 
2*b*_R^2*a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.81.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 19805 vs. \(2 (469) = 938\).

Time = 44.23 (sec) , antiderivative size = 19805, normalized size of antiderivative = 34.81 \[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(x^(13/2)/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")
 
output
Too large to include
 
3.11.81.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Timed out} \]

input
integrate(x**(13/2)/(c*x**4+b*x**2+a)**3,x)
 
output
Timed out
 
3.11.81.7 Maxima [F]

\[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\int { \frac {x^{\frac {13}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{3}} \,d x } \]

input
integrate(x^(13/2)/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")
 
output
1/16*((5*b^2*c + 28*a*c^2)*x^(15/2) + 9*(b^3 + 4*a*b*c)*x^(11/2) + 24*a^2* 
b*x^(3/2) + (37*a*b^2 - 4*a^2*c)*x^(7/2))/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2 
*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b 
^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2* 
b^3*c + 16*a^3*b*c^2)*x^2) + integrate(1/32*((5*b^2 + 28*a*c)*x^(5/2) - 72 
*a*b*sqrt(x))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2 + (b^4*c - 8*a*b^2*c^2 + 1 
6*a^2*c^3)*x^4 + (b^5 - 8*a*b^3*c + 16*a^2*b*c^2)*x^2), x)
 
3.11.81.8 Giac [F]

\[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\int { \frac {x^{\frac {13}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{3}} \,d x } \]

input
integrate(x^(13/2)/(c*x^4+b*x^2+a)^3,x, algorithm="giac")
 
output
integrate(x^(13/2)/(c*x^4 + b*x^2 + a)^3, x)
 
3.11.81.9 Mupad [B] (verification not implemented)

Time = 16.98 (sec) , antiderivative size = 39697, normalized size of antiderivative = 69.77 \[ \int \frac {x^{13/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

input
int(x^(13/2)/(a + b*x^2 + c*x^4)^3,x)
 
output
((9*x^(11/2)*(b^3 + 4*a*b*c))/(16*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (x^(7/ 
2)*(37*a*b^2 - 4*a^2*c))/(16*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (c*x^(15/2) 
*(28*a*c + 5*b^2))/(16*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (3*a^2*b*x^(3/2)) 
/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))/(x^4*(2*a*c + b^2) + a^2 + c^2*x^8 + 
2*a*b*x^2 + 2*b*c*x^6) - atan(((((386183668047020032*a^16*c^16 + 209715200 
0*a^3*b^26*c^3 - 7615312560128*a^4*b^24*c^4 + 295658569334784*a^5*b^22*c^5 
 - 5154027327193088*a^6*b^20*c^6 + 52821290217635840*a^7*b^18*c^7 - 350572 
668266741760*a^8*b^16*c^8 + 1560295235622273024*a^9*b^14*c^9 - 46282369669 
60300032*a^10*b^12*c^10 + 8604139182719238144*a^11*b^10*c^11 - 79240263697 
53743360*a^12*b^8*c^12 - 1942353261163970560*a^13*b^6*c^13 + 1182321565924 
2749952*a^14*b^4*c^14 - 8419198028392431616*a^15*b^2*c^15)/(268435456*(b^2 
8 + 268435456*a^14*c^14 + 1456*a^2*b^24*c^2 - 23296*a^3*b^22*c^3 + 256256* 
a^4*b^20*c^4 - 2050048*a^5*b^18*c^5 + 12300288*a^6*b^16*c^6 - 56229888*a^7 
*b^14*c^7 + 196804608*a^8*b^12*c^8 - 524812288*a^9*b^10*c^9 + 1049624576*a 
^10*b^8*c^10 - 1526726656*a^11*b^6*c^11 + 1526726656*a^12*b^4*c^12 - 93952 
4096*a^13*b^2*c^13 - 56*a*b^26*c)) - (x^(1/2)*(-(625*b^31 + 625*b^6*(-(4*a 
*c - b^2)^25)^(1/2) - 15192104632320*a^15*b*c^15 - 89000*a^2*b^27*c^2 + 27 
186416*a^3*b^25*c^3 - 1342297600*a^4*b^23*c^4 + 25492409600*a^5*b^21*c^5 - 
 265188833280*a^6*b^19*c^6 + 1688816578560*a^7*b^17*c^7 - 6664504147968*a^ 
8*b^15*c^8 + 14462970429440*a^9*b^13*c^9 - 4163326443520*a^10*b^11*c^10...